Save the entire network to a configuration file.
bool save( const std:: string & configuration_file )
Saves the entire network to a configuration file.
int save_to_fixed( const std:: string & configuration_file )
Save the training structure to a file, with the format as specified in read_train_from_file
bool save_train( const std:: string & filename )
Saves the training structure to a fixed point data file.
bool save_train_to_fixed( const std:: string & filename, unsigned int decimal_point )
Scale data in input vector before feed it to ann based on previously calculated parameters.
void scale_input( fann_type * input_vector )
Scales the inputs in the training data to the specified range.
void scale_input_train_data( fann_type new_min, fann_type new_max )
Scale data in output vector before feed it to ann based on previously calculated parameters.
void scale_output( fann_type * output_vector )
Scales the outputs in the training data to the specified range.
void scale_output_train_data( fann_type new_min, fann_type new_max )
Scale input and output data based on previously calculated parameters.
void scale_train( training_data & data )
Scales the inputs and outputs in the training data to the specified range.
void scale_train_data( fann_type new_min, fann_type new_max )
Set the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
void set_activation_function( activation_function_enum activation_function, int layer, int neuron )
Set the activation function for all of the hidden layers.
void set_activation_function_hidden( activation_function_enum activation_function )
Set the activation function for all the neurons in the layer number layer, counting the input layer as layer 0.
void set_activation_function_layer( activation_function_enum activation_function, int layer )
Set the activation function for the output layer.
void set_activation_function_output( activation_function_enum activation_function )
Set the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
void set_activation_steepness( fann_type steepness, int layer, int neuron )
Set the steepness of the activation steepness in all of the hidden layers.
void set_activation_steepness_hidden( fann_type steepness )
Set the activation steepness all of the neurons in layer number layer, counting the input layer as layer 0.
void set_activation_steepness_layer( fann_type steepness, int layer )
Set the steepness of the activation steepness in the output layer.
void set_activation_steepness_output( fann_type steepness )
Set the bit fail limit used during training.
void set_bit_fail_limit( fann_type bit_fail_limit )
Sets the callback function for use during training.
void set_callback( callback_type callback, void * user_data )
Sets the array of cascade candidate activation functions.
void set_cascade_activation_functions( activation_function_enum * cascade_activation_functions, unsigned int cascade_activation_functions_count )
Sets the array of cascade candidate activation steepnesses.
void set_cascade_activation_steepnesses( fann_type * cascade_activation_steepnesses, unsigned int cascade_activation_steepnesses_count )
Sets the cascade candidate change fraction.
void set_cascade_candidate_change_fraction( float cascade_candidate_change_fraction )
Sets the candidate limit.
void set_cascade_candidate_limit( fann_type cascade_candidate_limit )
Sets the number of cascade candidate stagnation epochs.
void set_cascade_candidate_stagnation_epochs( unsigned int cascade_candidate_stagnation_epochs )
Sets the max candidate epochs.
void set_cascade_max_cand_epochs( unsigned int cascade_max_cand_epochs )
Sets the maximum out epochs.
void set_cascade_max_out_epochs( unsigned int cascade_max_out_epochs )
Sets the number of candidate groups.
void set_cascade_num_candidate_groups( unsigned int cascade_num_candidate_groups )
Sets the cascade output change fraction.
void set_cascade_output_change_fraction( float cascade_output_change_fraction )
Sets the number of cascade output stagnation epochs.
void set_cascade_output_stagnation_epochs( unsigned int cascade_output_stagnation_epochs )
Sets the weight multiplier.
void set_cascade_weight_multiplier( fann_type cascade_weight_multiplier )
Change where errors are logged to.
void set_error_log( FILE * log_file )
Calculate scaling parameters for future use based on training data.
bool set_input_scaling_params( const training_data & data, float new_input_min, float new_input_max )
Set the learning momentum.
void set_learning_momentum( float learning_momentum )
Set the learning rate.
void set_learning_rate( float learning_rate )
Calculate scaling parameters for future use based on training data.
bool set_output_scaling_params( const training_data & data, float new_output_min, float new_output_max )
Sets the quickprop decay factor.
void set_quickprop_decay( float quickprop_decay )
Sets the quickprop mu factor.
void set_quickprop_mu( float quickprop_mu )
The decrease factor is a value smaller than 1, which is used to decrease the step-size during RPROP training.
void set_rprop_decrease_factor( float rprop_decrease_factor )
The maximum step-size is a positive number determining how large the maximum step-size may be.
void set_rprop_delta_max( float rprop_delta_max )
The minimum step-size is a small positive number determining how small the minimum step-size may be.
void set_rprop_delta_min( float rprop_delta_min )
The initial step-size is a small positive number determining how small the initial step-size may be.
void set_rprop_delta_zero( float rprop_delta_zero )
The increase factor used during RPROP training.
void set_rprop_increase_factor( float rprop_increase_factor )
Set the sarprop step error shift.
void set_sarprop_step_error_shift( float sarprop_step_error_shift )
Set the sarprop step error threshold factor.
void set_sarprop_step_error_threshold_factor( float sarprop_step_error_threshold_factor )
Set the sarprop_temperature.
void set_sarprop_temperature( float sarprop_temperature )
Set the sarprop weight decay shift.
void set_sarprop_weight_decay_shift( float sarprop_weight_decay_shift )
Calculate scaling parameters for future use based on training data.
bool set_scaling_params( const training_data & data, float new_input_min, float new_input_max, float new_output_min, float new_output_max )
Set the training data to the input and output data provided.
void set_train_data( unsigned int num_data, unsigned int num_input, fann_type ** input, unsigned int num_output, fann_type ** output )
Set the error function used during training.
void set_train_error_function( error_function_enum train_error_function )
Set the stop function used during training.
void set_train_stop_function( stop_function_enum train_stop_function )
Set the training algorithm.
void set_training_algorithm( training_algorithm_enum training_algorithm )
Set a connection in the network.
void set_weight( unsigned int from_neuron, unsigned int to_neuron, fann_type weight )
Set connections in the network.
void set_weight_array( connection * connections, unsigned int num_connections )
Shuffles training data, randomizing the order.
void shuffle_train_data()
Constructs a backpropagation neural network from a configuration file, which have been saved by save.
neural_net( const std:: string & configuration_file )
The fast artificial neural network (fann) structure.
struct fann
Structure used to store error-related information, both struct fann and struct fann_train_data can be casted to this type.
struct fann_error
Structure used to store data, for use with training.
struct fann_train_data
Changes the training data to a subset, starting at position pos and length elements forward.
void subset_train_data( unsigned int pos, unsigned int length )