| $#! | |
| ) | |
| C | |
| cascadetrain_on_data, neural_net | |
| cascadetrain_on_file, neural_net | |
| clear_scaling_params, neural_net | |
| copy_from_struct_fann-DEPRECATED, neural_net | |
| create_from_file-DEPRECATED, neural_net | |
| create_shortcut-DEPRECATED, neural_net | |
| create_shortcut_array-DEPRECATED, neural_net | |
| create_sparse-DEPRECATED, neural_net | |
| create_sparse_array-DEPRECATED, neural_net | |
| create_standard-DEPRECATED, neural_net | |
| create_standard_array-DEPRECATED, neural_net | |
| create_train_from_callback, training_data | |
| D | |
| descale_input, neural_net | |
| descale_output, neural_net | |
| descale_train, neural_net | |
| destroy | |
| disable_seed_rand, neural_net | |
| E | |
| enable_seed_rand, neural_net | 
Creates a standard backpropagation neural network, which is sparsely connected, this will default the network_type_enum to LAYER
neural_net( float connection_rate, unsigned int num_layers, ... ) 
Creates a neural network of the desired network_type_enum net_type.
neural_net( network_type_enum net_type, unsigned int num_layers, ... ) 
Trains on an entire dataset, for a period of time using the Cascade2 training algorithm.
void cascadetrain_on_data( const training_data & data, unsigned int max_neurons, unsigned int neurons_between_reports, float desired_error ) 
Does the same as cascadetrain_on_data, but reads the training data directly from a file.
void cascadetrain_on_file( const std:: string & filename, unsigned int max_neurons, unsigned int neurons_between_reports, float desired_error ) 
Clears scaling parameters.
bool clear_scaling_params() 
Creates the training data struct from a user supplied function.
void create_train_from_callback( unsigned int num_data, unsigned int num_input, unsigned int num_output, void (FANN_API *user_function)(unsigned int, unsigned int, unsigned int, fann_type *, fann_type *) ) 
Scale data in input vector after get it from ann based on previously calculated parameters.
void descale_input( fann_type * input_vector ) 
Scale data in output vector after get it from ann based on previously calculated parameters.
void descale_output( fann_type * output_vector ) 
Descale input and output data based on previously calculated parameters.
void descale_train( training_data & data ) 
Destructs the entire network.
void destroy() 
Destructs the training data.
void destroy_train() 
Disables the automatic random generator seeding that happens in FANN.
void disable_seed_rand() 
Enables the automatic random generator seeding that happens in FANN.
void enable_seed_rand()