Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z
N
 network_type_enum
 neural_net
~neural_net, neural_net
 neural_net()-DEPRECATED, neural_net
 neural_net(float connection_rate,unsigned int num_layers,const unsigned int*layers), neural_net
 neural_net(network_type_enum net_type,InputIterator layersBeginIterator,InputIterator layersEndIterator), neural_net
 neural_net(network_type_enum net_type,unsigned int num_layers,const unsigned int*layers), neural_net
 neural_net(struct fann*other), neural_net
 num_input_train_data, training_data
 num_output_train_data, training_data
P
 Parameters
 print_connections, neural_net
 print_error, neural_net
 print_parameters, neural_net
R
 randomize_weights, neural_net
 read_train_from_file, training_data
 reset_errno, neural_net
 reset_errstr, neural_net
 reset_MSE, neural_net
 run, neural_net
Definition of network types used by neural_net::get_network_type
class neural_net
neural_net is the main neural network class used for both training and execution
#ifdef USE_VIRTUAL_DESTRUCTOR virtual #endif ~neural_net()
Provides automatic cleanup of data.
neural_net() : ann(NULL)
Creates an empty neural net.
neural_net(float connection_rate,
unsigned int num_layers,
const unsigned int *layers)
Creates a standard backpropagation neural network, which is sparsely connected, this will default the network_type_enum to LAYER
template <class InputIterator> neural_net(network_type_enum net_type,
InputIterator layersBeginIterator,
InputIterator layersEndIterator)
Creates a neural network of the desired network_type_enum net_type, based on iterator to the layers.
neural_net(network_type_enum net_type,
unsigned int num_layers,
const unsigned int *layers)
Creates a neural network of the desired network_type_enum net_type, based on array of layers.
neural_net(struct fann *other)
Creates a copy the other neural_net.
unsigned int num_input_train_data()
Returns the number of inputs in each of the training patterns in the training_data.
unsigned int num_output_train_data()
Returns the number of outputs in each of the training patterns in the struct fann_train_data.
void print_connections()
Will print the connections of the ann in a compact matrix, for easy viewing of the internals of the ann.
void print_error()
Prints the last error to stderr.
void print_parameters()
Prints all of the parameters and options of the neural network
void randomize_weights(fann_type min_weight,
fann_type max_weight)
Give each connection a random weight between min_weight and max_weight
bool read_train_from_file(const std::string &filename)
Reads a file that stores training data.
void reset_errno()
Resets the last error number.
void reset_errstr()
Resets the last error string.
void reset_MSE()
Resets the mean square error from the network.
fann_type *run(fann_type *input)
Will run input through the neural network, returning an array of outputs, the number of which being equal to the number of neurons in the output layer.
Close