N | |
network_type_enum | |
neural_net | |
~ | neural_net, neural_net |
neural_net()-DEPRECATED, neural_net | |
neural_net(float connection_rate,unsigned int num_layers,const unsigned int*layers), neural_net | |
neural_net(network_type_enum net_type,InputIterator layersBeginIterator,InputIterator layersEndIterator), neural_net | |
neural_net(network_type_enum net_type,unsigned int num_layers,const unsigned int*layers), neural_net | |
neural_net(struct fann*other), neural_net | |
num_input_train_data, training_data | |
num_output_train_data, training_data | |
P | |
Parameters | |
print_connections, neural_net | |
print_error, neural_net | |
print_parameters, neural_net | |
R | |
randomize_weights, neural_net | |
read_train_from_file, training_data | |
reset_errno, neural_net | |
reset_errstr, neural_net | |
reset_MSE, neural_net | |
run, neural_net |
neural_net is the main neural network class used for both training and execution
class neural_net
Provides automatic cleanup of data.
#ifdef USE_VIRTUAL_DESTRUCTOR virtual #endif ~neural_net()
Creates an empty neural net.
neural_net( ) : ann(NULL)
Creates a standard backpropagation neural network, which is sparsely connected, this will default the network_type_enum to LAYER
neural_net( float connection_rate, unsigned int num_layers, const unsigned int * layers )
Creates a neural network of the desired network_type_enum net_type, based on iterator to the layers.
template <class InputIterator> neural_net( network_type_enum net_type, InputIterator layersBeginIterator, InputIterator layersEndIterator )
Creates a neural network of the desired network_type_enum net_type, based on array of layers.
neural_net( network_type_enum net_type, unsigned int num_layers, const unsigned int * layers )
Creates a copy the other neural_net.
neural_net( struct fann * other )
Returns the number of inputs in each of the training patterns in the training_data.
unsigned int num_input_train_data()
Returns the number of outputs in each of the training patterns in the struct fann_train_data.
unsigned int num_output_train_data()
Will print the connections of the ann in a compact matrix, for easy viewing of the internals of the ann.
void print_connections()
Prints the last error to stderr.
void print_error()
Prints all of the parameters and options of the neural network
void print_parameters()
Give each connection a random weight between min_weight and max_weight
void randomize_weights( fann_type min_weight, fann_type max_weight )
Reads a file that stores training data.
bool read_train_from_file( const std:: string & filename )
Resets the last error number.
void reset_errno()
Resets the last error string.
void reset_errstr()
Resets the mean square error from the network.
void reset_MSE()
Will run input through the neural network, returning an array of outputs, the number of which being equal to the number of neurons in the output layer.
fann_type *run( fann_type * input )